VAPOR: A desktop environment for interactive exploration of large scale CFD simulation data

John Clyne, Alan Norton
National Center for Atmospheric Research
Boulder, CO USA

This work is funded in part through U.S. National Science Foundation grants 03-25934 and 09-06379, and through a TeraGrid GIG award.
Outline

• Problem motivation
• VAPOR overview – what makes VAPOR unique?
 – Data model
 – Earth and space sciences focus
 – Analysis capabilities
• Laptop demonstration
• Future directions
Solar thermal starting plume
Computed at the dawn of *terascale* computing

- 2003 - Simulation
 - 6 months run time
 - 504x504x2048 grid
 - 5 variables (u,v,w,rho,temp)
 - ~500 time steps saved
 - 8 TBs storage (4GBs/var/timestep)

Why did Mark give up?

1. Analysis tools didn’t scale
2. Analysis tools didn’t have features needed for in-depth analysis

- 2006 - Analysis Resumed
- 2007 - *New Journal Physics* publication

Mark Rast, NCAR/CU, 2003
VAPOR Project Goals

• Improve scientific productivity by facilitating interactive analysis and exploration of the largest numerical simulation outputs without the need for Herculean interactive computing resources

And...

• Change role of Advanced 3D Visualization in sciences

From: a scientific finale
 • Pictures for publication and presentation
 • Performed by visualization experts

To: an integral part of the scientific discovery process
 • Visual data analysis aiding investigation
 • Performed by scientists
Key Components: What makes VAPOR different from other tools?

1. **Domain specific**: earth and space sciences CFD

2. **Data analysis**: qualitative and quantitative data interrogation and manipulation capabilities

3. **Terabytes from the desktop**: operates on terascale sized simulations with only desktop computing
Key component (1)
Earth and space sciences CFD focus

• Scientific steering committee guides development
 – 18 scientists from a broad set of disciplines

• Algorithms
 – General purpose
 • E.g. volume rendering, isosurfaces, cutting planes, histograms
 – Specialized for earth sciences CFD
 • E.g. steady and unsteady flow visualization
 • Geo-referenced data (e.g. map projections, lat-lon coordinates)
 • Physically based feature tracking
Key component (1)
Earth sciences CFD focus

• Data types and grids:
 – Regular grids
 • Uniform, terrain following, staggered
 – Block structured AMR
 – Spherical (prototype)
 – Temporal data with non-uniform sampling

• Domain specific Graphical User Interface
 1. Features you need are there (hopefully!)
 2. Features you don’t need are not there
 • => improved ease-of-use
Specialized algorithms:
Spherical shell data volume rendering

- Simulation of deep convection in convection zones of solar-like stars

- Grid geometry is a spherical shell, covering all latitudes and longitudes and spans a depth of 0.72-0.96 solar radii

- Non-uniform grid spacing in latitude and radial axes

- Image courtesy of Ben Brown, University of Colorado

Brown et al. 2007
Specialized algorithms: Magnetic field line advection

- Combines steady and unsteady flow integration to advect field lines in a time-varying velocity field

Data courtesy Pablo Mininni
Key component (2)

Data analysis

1. Quantitative information available throughout GUI
 – E.g. histograms, probes, annotation, user coordinates
2. GUI supports *visualization-aided* analysis
3. Coupled with IDL® to calculate and visualize derived quantities in region-of-interest
 – Immediate analysis applied to data identified in visualization
 – Immediate visualization of derived quantities calculated in IDL
 • Identify region of interest
 • Export to IDL session
 • Import result into visualization
4. Integrated Python (*numpy/scipy*) calculation engine
Key Component (3)
Terabyte data handling from a desktop PC (or laptop)

- **Progressive data access**
 - Permit speed/quality tradeoffs
 - Region of Interest (ROI) identification and isolation

- **Two wavelet-based models:**
 - VDC1: multiresolution
 - VDC2: multiresolution and coefficient prioritization

Combination of visualization, ROI isolation, and multiresolution data representation that provides sufficient data reduction to enable interactive work

Think *Google Earth***!!!
Computing technology performance increases from 1977 to 2006

Moore’s Law does not apply to these!!!

Orders of magnitude difference between improvements in CPU speed and IO bandwidth

Balance between compute and IO is changing rapidly

Increases in processor speed and disk density have both grown at alarming rates while disk transfer rates have only grown modestly and disk agility has hardly improved at all.

High End Computing Revitalization Task Force (HEC-RTF), Inter Agency Working Group (HEC-IWG) File Systems and I/O Research Workshop
What does this mean for data analysis and visualization?
Definition: A system is *interactive* if the time between a user event and the response to that event is short enough to maintain my full attention.

If the response time is...
- 1-5 seconds: I’m engaged
- 5-60 seconds: I’m tapping my foot
- 1-3 minutes: I’m reading email
- > 3 minutes: I’ve forgotten why I asked the question!

What is meant by *interactive* analysis?
Mark Rast, University of Colorado, 2005

Wait time in seconds for reading a 3D scalar volume

Inadequate IO performance alone can preclude interactive work such as visualization and analysis!!!

What can be done?

<table>
<thead>
<tr>
<th>Time in seconds (Volume resolution)</th>
<th>100 MB/sec</th>
<th>400 MB/sec</th>
<th>4000 MB/sec</th>
<th>24,000 MB/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>512 (2 GBs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804 (4 GBs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024 (262 GBs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4096</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12288 (7 TBs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Desktop
Workstation
Vis cluster
Jaguar
Discrete Wavelet Transforms

- Discrete Fourier transform

\[f(t) = \frac{1}{N} \sum_{n=0}^{N-1} a_n e^{j2\pi nt/N} \quad (0 \leq t \leq N - 1) \]

- Discrete Wavelet Transform

\[f(t) = \sum_k c(k) \phi_k(t) + \sum_{k\geq j \geq 0} d_j(k) \psi_{j,k}(t) \]

- Properties
 - Multiresolution representation
 - Efficient: Linear time complexity
 - Adaptable: Can represent functions with discontinuities, bounded domains, and arbitrary topology
 - Time frequency localization: Many coefficients are zero or close to zero

Scaling term (coarse representation of signal)

Detail term (high frequency components of signal)

\[\phi(t) = \sum_k h_\phi(k) \sqrt{2} \phi(2t - k), \quad k \in \mathbb{Z} \quad \text{scaling function} \]

\[\psi(t) = \sum_k h_\psi(k) \sqrt{2} \phi(2t - k), \quad k \in \mathbb{Z} \quad \text{wavelet function} \]
Wavelet compression and progressive access (VDC1)
Frequency truncation method

• Truncate “j” parameter of expansion:
\[f(t) = \sum_{k} c(k) \phi_k(t) + \sum_{k} \sum_{j=0}^{\log_2 N} d_{j}(k) \psi_{j,k}(t) \]

• Provides coarsened approximation at power-of-two increments

• Good
 – Simple
 – Fast
 – Maintains structure of original grid

• Bad:
 – Limited to power-of-two reductions
 – Compression quality
Wavelet compression and progressive access (VDC2)

Coefficient prioritization method

• Goal: prioritize coefficients used in linear expansion

\[
f(t) = \sum_{n=0}^{N-1} a_n u(t), \quad \text{original } f(t) \quad \hat{f}(t) = \sum_{m=0}^{M-1} a_m u(t), \quad (M < N), \quad \text{compressed } f(t)
\]

\[L^2 \text{ error given by: } L^2 = \left\| f(t) - \hat{f}(t) \right\|_2^2\]

If \(u(t) (\phi(t) \text{ and } \psi(t) \text{ in case of wavelet expansion functions}) \) are orthonormal, then

orthonormal: \(\langle u_k(t), u_l(t) \rangle = \int u_k(t) u_l(t) dt = \begin{cases} 0, & k \neq l \\ 1, & k = l \end{cases} \)

\[L^2 = \sum_{i=M}^{N-1} (a_{\pi(i)})^2 = \left\| f(t) - \hat{f}(t) \right\|_2^2, \text{ where } a_{\pi(i)} \text{ are discarded coefficients}\]

• The error is the sum of the squares of the coefficients we leave out!
• So to minimize the \(L^2\) error, we simply discard (or delay transfer) the smallest coefficients!
• If discarded coefficients are zero, there is no information loss!
Solar thermal plume at varying resolutions (VDC1) [M. Rast, 2006]

What have we lost???
Magnetic field line integration resolution comparison (VDC1)

- 1536^3 MHD Simulation
- 4th order Runge-Kutta
- Mininni et al. (2007)
100:1 Compression
1024^3 Taylor-Green turbulence (enstrophy field) [P. Mininni, 2006]

No compression

Coefficient prioritization (VDC2)
4096^3 Homogenous turbulence simulation output visualized with VAPOR 2.0
Volume rendering of original enstrophy field and 800:1 compressed field

Original: 275GBs/field

800:1 compressed: 0.34GBs/field

Data provided by P.K. Yeung at Georgia Tech and Diego Donzis at Texas A&M
Live demos on a laptop

MHD decay [Mininni et al., PRL 97, 244503 (2006)]
- 1536³, pseudo-spectral method
- 12GBs/variable/time-step
- Exhibits new finding in MHD: current “folding” and “roll-up”

Compressible convection simulation [Rast, et al, 2000]
- 512²x256
- horizontally periodic, dimensions 6x6x1(deep) constant heat flux into the bottom, constant temperature on top
Future directions

• Broadening scientific end user community
 – E.g. Weather researchers, ocean modelers
 • Geo-referenced 2D & 3D data
 • Stretched grids
 • Missing & undefined data

• VAPOR progressive access data model
 – VAPOR data importers for VisIt and ParaView
 – Fortran-callable, distributed memory (MPI) API

• Extensible architecture
 – Facilitate 3rd party development
VAPOR Summary

• Progressive data access
 – Enables interactive exploration of massive datasets
 – **Hypothesis may be interactively explored with coarsened data and later validated (perhaps non-interactively) with native data**

• Visualization aided data analysis
 – Intended to be used by scientists, not visualization specialist
 – Requirements defined by a steering committee of scientists

• Narrow focus: Earth & space CFD simulations
 – Algorithms
 – Data types

• Emphasis on desktop/laptop platforms, not on visualization supercomputers
Acknowledgements

• Steering Committee
 – Benjamin Brown – U. of Wisconsin
 – Nic Brummell – CU
 – Gerry Creager – Texas A&M
 – Yuhong Fan - NCAR, HAO
 – Aimé Fournier – NCAR, IMAGe
 – Pablo Mininni - NCAR, IMAGe
 – Aake Nordlund - University of Copenhagen
 – Leigh Orf - Central Michigan U.
 – Yannick Ponty - Observatoire de la Cote d'Azur
 – Thara Prabhakaran - U. of Georgia
 – Annick Pouquet - NCAR, ESSL
 – Mark Rast - CU
 – Duane Rosenberg - NCAR, IMAGe
 – Matthias Rempel - NCAR, HAO
 – Geoff Vasil, CU

• Developers
 – John Clyne – NCAR, CISL
 – Dan Lagreca – NCAR, CISL
 – Alan Norton – NCAR, CISL
 – Kenny Gruchalla – NREL
 – Victor Snyder – CSM
 – Kendal Southwick – NCAR, CISL

• Research Collaborators
 – Kwan-Liu Ma - U.C. Davis
 – Hiroshi Akiba - U.C. Davis
 – Han-Wei Shen - Ohio State
 – Liya Li - Ohio State

• Systems Support
 – Joey Mendoza - NCAR, CISL
 – Pam Gilman - NCAR, CISL
Questions???

www.vapor.ucar.edu
vapor@ucar.edu